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Abstract

When MCMC methods for Bayesian spatiotemporal modeling are applied to large geostatis-

tical problems, challenges arise as a consequence of storage requirements, computing costs,

and convergence monitoring. This article describes the parallelization of a reparametrized

and marginalized posterior sampling (RAMPS) algorithm, which is carefully designed to gen-

erate posterior samples efficiently. The algorithm is implemented using the Parallel Linear

Algebra Package (PLAPACK). The scalability of the algorithm is investigated via simulation

experiments that are implemented using a cluster with 25 processors. The usefulness of the

method is illustrated with an application to sulfur dioxide concentration data from the Air

Quality System database of the U.S. Environmental Protection Agency.

Keywords: Bayesian inference, Markov chain Monte Carlo, parallel algorithm, spatial mod-

eling



1 Introduction

Markov chain Monte Carlo (MCMC) is a very useful but computing intensive statistical

method. MCMC samples from the commonly used Gibbs sampler or Metropolis-Hastings

algorithm, however, are usually autocorrelated. As the autocorrelation increases, larger

MCMC sample sizes are needed to make credible Bayesian inferences about the quantities of

interest. The liability is worsened when large problems are addressed, since both the storage

and computation requirements for each single MCMC iteration can make the use of a single

processor machine infeasible. A geostatistical model with a dense spatiotemporal correlation

matrix demands order n2 in storage for n observations. Cholesky decomposition of such a

matrix is of order n3 in computation. This article addresses the feasibility of parallelizing a

reparametrized and marginalized posterior sampling (RAMPS) algorithm, which is carefully

designed to lead to lower autocorrelation in MCMC samples, in spatiotemporal modeling of

large datasets.

As a motivating example, consider air pollution data from the Air Quality System (AQS)

database of the U.S. Environmental Protection Agency (EPA). Monitoring stations forward

hourly or daily measurements of pollutant concentration to EPA’s database. EPA computes

a yearly summary for each monitoring station. In this paper, we focus on an analysis

of the annual mean of hourly measured concentration of sulfur dioxide (SO2), one of the

“criteria air pollutants” regulated by EPA. There are n = 4711 observations from 870 sites

in the most recent 8 years (1998–2005). Figure 1 shows all the measurement sites in the

coterminous U.S. The data are not balanced since not all sites have all 8 measurements

(see Table 1). For such a large dataset, fitting a spatiotemporal model and monitoring

the convergence of MCMC algorithms would be impractical for a single processor machine

due to the order n3 Cholesky decomposotions of covariance matrices. One way to avoid

Cholesky decompositions of large matrices is to divide the whole area into subregions and

assume independence across subregions conditional on random effects at the subregion level.

This method has been used, for example, by Cowles et al. (2002) in the analysis of point

referenced snow water equivalent data. The approach reported in this paper, however, does

not require the assumption of conditional independence across subregions since it provides
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a direct solution by parallelizing an efficient MCMC algorithm.

[Figure 1 about here.]

[Table 1 about here.]

The possibility of parallel processing has long been recognized by statisticians in carry-

ing out computing intensive methods (Sylwestrowicz, 1982; Schervish, 1988; Adams et al.,

1996). For applications such as bootstrapping and kriging, algorithms can be “embarrass-

ingly parallel” (Rossini et al., 2003), since no inter-processor communication is needed. For

notoriously computing intensive MCMC methods, however, parallelization is complicated

by dependence between successive steps of the Markov chains. The simplest scheme, which

runs multiple chains in parallel, has a serious limitation in that each processor must spend

a significant amount of burn-in time (Rosenthal, 2000). A non-trivial scheme parallelizes a

single MCMC chain (Wilkinson, 2005). As Wilkinson points out, there are different issues

related to the different schemes, and each is appropriate in different settings. The focus of

this article is the latter scheme, parallelization of a single MCMC chain.

In the context of spatial statistical modeling, Whiley and Wilson (2004) propose various

parallel algorithms for models with Gaussian spatial random effects. Single chain paralleliza-

tion is done by partitioning the spatial domain and the implementation is done with a parallel

linear algebra library ScaLAPACK (Blackford et al., 1997). The RAMPS algorithm paral-

lelized in this article is more efficient than those discussed by Whiley and Wilson (2004).

It is a two-block updating algorithm: the first block of parameters is updated from their

marginal distributions using slice sampling (Neal, 2003); the second block is then updated

by conditioning on the current values of the parameters in the first block. The parallelization

is implemented using Parallel Linear Algebra package PLAPACK (van de Geijn, 1997). This

methodology has advantages over that of Whiley and Wilson (2004) in that the posterior

sample has lower autocorrelation and the implementation requires less programming effort.

The rest of this article is organized as follows. In Section 2, we start with a Gaussian

geostatistical model which consists of three components: trend, spatial process, and mea-

surement error. This model is generalized to incorporate the temporal dimension, forming

a spatiotemporal model. We propose a reparametrization of the model to facilitate the
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MCMC algorithm. In Section 3, we describe in detail the RAMPS algorithm and discuss the

computational bottleneck of the algorithm for large datasets. We address this bottleneck

by parallelizing the RAMPS algorithm with PLAPACK in Section 4. Timing performance

results under various sample sizes and processor grid sizes are presented in Section 5. In

Section 6, we illustrate the method with a spatiotemporal model for the sulfur dioxide con-

centration data. A brief discussion concludes in Section 7.

2 A Bayesian Spatiotemporal Geostatistical Model

Consider a subset D of the r-dimensional Euclidean space Rr, with positive Euclidean vol-

ume. The dimension r in most spatial data is 2. Let s be a spatial location and Y (s) be a

random variable measured at s. A random field (or stochastic process) {Y (s) : s ∈ D}, is

formed when the spatial index s varies continuously over D. In this article, we focus on the

case of a Gaussian random field. Geostatistical data are a realization of the random field

observed at fixed locations:

{Y (si) : si ∈ D, i = 1, . . . , n}. (1)

Geostatistical models provide a natural and interpretable way to model spatial data

measured at irregularly-spaced point sites. Suppose that for Y (si), a p × 1 covariate vector

X(si) can be used to model the large-scale variation, or spatial trend, of Y (si). Let Y =

{Y (s1), . . . , Y (sn)}> and X = {X>(s1), . . . , X
>(sn)}

>. A Gaussian geostatistical model for

Y consists of spatial trend, spatial correlation, and measurement error:

Y = Xβ + Z + ε,

Z ∼ N
(

0, σ2
zΩ(φ)

)

, (2)

ε ∼ N(0, σ2
eI).

where β is a p × 1 vector of covariate coefficients, Z is a n × 1 vector capturing the spatial

correlation, and ε is a n × 1 vector of independent and identically distributed measurement

errors. The distribution of Z is multivariate normal with mean zero and covariance matrix

σ2
zΩ(φ), where Ω(φ) is the correlation matrix as a function of parameter φ. In general,
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the correlation of Z(si) and Z(sj) is modeled as a function of the distance, and possibly

orientation, between sites si and sj. When the correlation only depends on distance d between

sites, the correlation is isotropic. Examples of parametric isotropic correlation functions are

the exponential, spherical, and Matérn classes (see, for example, Banerjee et al., 2004, Table

2.1).

To facilitate the MCMC algorithm in the next section, we reparametrize the variance

components of model (2). Note that model (2) can be written as

Y ∼ N
(

Xβ, σ2
zΩ(φ) + σ2

eI
)

. (3)

Let σ2 = σ2
s + σ2

e and κ = σ2
e/σ

2. The reparametrized model is then

Y ∼ N
(

Xβ, σ2[(1 − κ)Ω(φ) + κI]
)

. (4)

The ratio κ is interpreted as the fraction in the total variation of Y contributed by the mea-

surement error. It is the “shrinkage factor” used in uniform shrinkage priors on variances in

hierarchical models (Christiansen and Morris, 1997; Daniels, 1999). This reparametrization

leads to a bounded support (0, 1) for κ, in contrast to the form used by Diggle and Ribeiro

(2002)

Y ∼ N
(

Xβ, σ2
z [Ω(φ) + λI]

)

, (5)

where λ = σ2
e/σ

2
z has unbounded support.

Model (4) can be generalized to incorporate a temporal component. Let Y = {Y (si, ti) :

si ∈ D, ti ∈ E, i = 1, . . . , n}, where E is a collection of time points. An extension of

model (4) is simply

Y ∼ N
(

Xβ, σ2[(1 − κ)Ω(φ, ρ) + κI]
)

, (6)

where Ω(φ, ρ) is a function of spatial correlation parameter φ and temporal correlation pa-

rameter ρ. A simple form for Ω(φ, ρ) is a separable structure of spatial correlation and

temporal correlation. When the data are balanced — that is, all sites have the same number

of temporal points — the correlation matrix Ω(φ, ρ) is ΩS(φ)⊗ΩT (ρ), where ΩS and ΩT are,

respectively, the spatial and the temporal correlation matrix, and ⊗ represents the Kronecker

product. A widely used temporal correlation matrix uses the AR(1) structure. When a site

has missing observations for some temporal points, which is often the case in practice, we
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need to extract the right rows and columns of ΩS(φ)⊗ΩT (ρ) to form the correlation matrix

Ω(φ, ρ).

Prior distributions on all unknown model parameters θ = (φ, ρ, κ, σ2, β) are required to

complete the Bayesian model. We first consider the priors of (σ2, κ), which are reparametrized

from variance parameters (σ2
z , σ

2
e). It is common practice in Bayesian geostatistical model-

ing to place semi-conjugate inverse gamma priors on both σ2
z and σ2

e . If independent inverse

gamma priors are placed on σ2
e and σ2

z — that is, if

σ2
z ∼ IG(az, bz),

σ2
e ∼ IG(ae, be),

then standard multivariate change-of-variable methods can be used to show that the joint

prior distribution induced on (σ2, κ) in our model parameterization is characterized by a

marginal density f of κ,

f(κ; az, bz, ae, be) =
Γ(ae + az)b

ae

e baz

z

Γ(ae)Γ(az)

κaz−1(1 − κ)ae−1

[bzκ + be(1 − κ)]ae+az

, κ ∈ (0, 1), (7)

and the conditional density of σ2 given κ,

σ2|κ ∼ IG

(

αe + αz,
bz

1 − κ
+

be

κ

)

. (8)

When bz = be, the density of κ in (7) is a Beta density with shape parameters az and ae.

The semi-conjugate prior for the vector of regression parameters β is multivariate normal.

If a noninformative prior is desired, variances approaching infinity may be specified, yielding

a prior proportional to a constant on the whole real line. This improper prior is widely used

in hierarchical regression modeling and leads to proper posterior distributions (Diggle and

Ribeiro, 2002).

The semi-conjugate prior for the temporal autocorrelation parameter ρ is normal, trun-

cated to the interval (−1, 1), or (0, 1) if restriction to positive autocorrelation is justified in

the application. The variance may be allowed to go to infinity, yielding a uniform prior over

the appropriate interval. The analysis presented in this article simply uses U(0, 1).

No semi-conjugate prior family exists for the spatial correlation parameter φ. A plausible,

and minimally informative, choice is uniform or log-uniform such that the induced support
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interval (l, r) for φ have endpoints specifying a safe range. For example, in the case of

spherical correlation where the spatial correlation between two sites with distance d is
(

1 −
3dφ

2
−

d3φ3

2

)

I{d ≤ 1/φ},

(l, r) can be chosen such that 1/r and 1/l represent the smallest and largest distances at

which spatial correlation could conceivably decay to 0 in the application.

3 The RAMPS Algorithm

Our RAMPS algorithm is designed to approach independent sampling from the joint pos-

terior distribution of all unknown model parameters θ. The posterior density of θ given Y

may be factored as

p(θ|Y ) = p(φ, ρ, κ|Y )p(σ2|φ, ρ, κ, Y )p(β|φ, ρ, σ2, κ, Y ) (9)

The RAMPS algorithm to draw posterior samples of θ given Y at the kth iteration is specified

as follows:

1. Draw (φ(k), ρ(k), κ(k)) from their joint posterior marginal distribution p(φ, ρ, κ|Y ) using

slice sampling (Neal, 2003);

2. Draw σ2,(k) from p(σ2|φ(k), ρ(k), κ(k), Y ), which is an inverse gamma density; and

3. Draw β(k) from p(β|φ(k), ρ(k), σ2,(k), κ(k), Y ), which is a multivariate normal density.

Of note is that none of the distributions depends on any parameter values from the previous

iteration. Consequently, in cases where p(φ, ρ, κ|Y ) is a known standard distribution, inde-

pendent samples can be drawn from the joint posterior distribution p(θ|Y ). For our model,

however, p(φ, ρ, κ|Y ) has a complex form for which the normalizing constant is unknown.

Thus, we rely on a slice sampling method (Neal, 2003) to draw from p(φ, ρ, κ|Y ).

Steps 2 and 3 of the algorithm are easy to implement. Let Ω(φ, ρ, κ) = (1−κ)Ω(φ, ρ)+κI.

It can be shown that, with a flat noninformative prior on β, the conditional distribution

p(β|φ, ρ, σ2, κ, Y ) in step 3 is multivariate normal

N
(

β̂,
[

X>σ2Ω−1(φ, ρ, κ)X
]−1

)

, (10)
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where

β̂ = [X>Ω−1(φ, ρ, κ)X]−1X>Ω−1(φ, ρ, κ)Y

is the generalized least squares (GLS) estimate of β given (φ, ρ, κ). With the priors on (σ2, κ)

in (7) and (8), the distribution p(σ2|φ, ρ, κ, Y ) in step 2 is inverse gamma

IG

(

αz + αe +
n − p

2
,

bz

1 − κ
+

be

κ
+

1

2
R̂>Ω−1(φ, ρ, κ)R̂

)

, (11)

where R̂ = Y − Xβ̂ is the residual from the the GLS fit. All quantities in (10) and (11) are

computed in step 1 (see below) and need not be recomputed.

The only challenging step in the algorithm is step 1. The use of semi-conjugate priors on

σ2 and β, as given in Section 2, simplifies the process of integrating these parameters out of

the joint posterior distribution to obtain the following analytic form of p(φ, ρ, κ|Y ):

p(φ, ρ, κ |Y ) ∝

(

bz

1 − κ
+

be

κ
+

1

2
R̂>Ω−1(φ, ρ, κ)R̂

)−(αe+αz+n−p

2
)

× |Ω(φ, ρ, κ)|−1/2|X>Ω−1(φ, ρ, κ)X|−1/2

× καz−1(1 − κ)αe−1 × I(l,r)(φ) × I(−1,1)(ρ), (12)

where I(a,b)(c) = 1 if c ∈ (a, b) and 0 otherwise. If there were a way to draw independent

samples from (12), then our algorithm would produce independent draws from the joint

posterior of all model parameters. This is, however, not possible, and, within each iteration

of the MCMC sampler, we must turn to iterative methods to draw from (12). The method

we use is slice sampling (Neal, 2003), which has been used by Agarwal and Gelfand (2002)

in a different context of fitting spatial data models. At each MCMC iteration, slice sampling

requires the identification of a region in the parameter space over which the density being

sampled exceeds a stochastically-determined threshold value. Since this region obviously

must be contained within the posterior support of the parameters being sampled, the search

for this region is greatly simplified by parameterizing the model such that the posterior

support of all parameters sampled by slice sampling is guaranteed to be bounded.

A commonly used slice sampler draws from a sequence of shrinking hyperrectangles placed

around the values of the previous iteration. Let g(φ, ρ, κ) be the expression on the right side

of (12). Let g0 = g(φ(k), ρ(k), κ(k)). With bounded support, a pseudo-algorithm for our slice

sampler that draws (φ(k+1), ρ(k+1), κ(k+1)) given (φ(k), ρ(k), κ(k)) is:
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1. Draw U from a uniform distribution over (0, 1).

2. Let g1 = g0U and let (Lφ, Rφ) × (Lρ, Rρ) × (Lκ, Rκ) be the support of (φ, ρ, κ).

3. Draw (φ∗, ρ∗, κ∗) from a uniform distribution over (Lφ, Rφ) × (Lρ, Rρ) × (Lκ, Rκ).

4. If g(φ∗, ρ∗, κ∗) > g1, then output (φ(k+1), ρ(k+1), κ(k+1)) = (φ∗, ρ∗, κ∗); Otherwise, shrink

the hyperrectangles (see details below) and goto step 3.

The shrinking of the hyperrectangles is done in the same way for all three parameters. Taking

φ as an example, if φ∗ ≤ φ(k), then Lφ = φ∗; if φ∗ > φ(k), then Rφ = φ∗. With very large

datasets, the variances of (φ, ρ, κ|Y ) tend to be very small, and many loops through steps 3

and 4 may be required to find a point (φ∗, ρ∗, κ∗) such that g(φ∗, ρ∗, κ∗) > g1. This search

is computationally expensive due to the repeated evaluations of g. In the SO2 example in

Section 6, the average number of evaluations per iteration computed from 1000 iterations is

9.887. The number of loops can be reduced, however, at the cost of higher autocorrelation

in the samples, by replacing the initial hyperrectangle in step 2 with a smaller one randomly

placed around the current point (φ(k), ρ(k), κ(k)). For a small dataset, the reduction in the

number of loops may not worth the resulting stronger autocorrelation.

Autocorrelations are introduced into the RAMPS output through the shrinking hyper-

rectangle. Nonetheless, we found that slice sampling introduced lower levels of autocor-

relation than the random-walk Metropolis-Hastings algorithm with a multivariate normal

proposal density. Thus, all of our reported results are based on MCMC samplers using

slice sampling to draw (φ, ρ, κ) from (12) in step 1, from a hyperrectangle centered at

(φ(k−1), ρ(k−1), κ(k−1)). There is no dependence on previous values of σ2 and β.

The computations needed in slice sampling from p(φ, ρ, κ|Y ) require solving linear equa-

tion systems and calculating the determinant of Ω(φ, ρ, κ). These quantities are computed

efficiently after the Cholesky decomposition of Ω(φ, ρ, κ). The Cholesky factorization of an

n × n matrix is of order n2 in terms of storage and n3 in terms of computation. Thus, as

sample size n becomes large, this step becomes very expensive in both storage and computa-

tion. To minimize this computational burden, the RAMPS algorithm is implemented using

PLAPACK, a parallel linear algebra library described in the next section (van de Geijn,

1997).
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The efficiency of the RAMPS algorithm can be appreciated by a comparison with the

traditional Gibbs sampling algorithm, which updates through full conditional distributions,

possibly blocked. We compared our serial algorithm with the Gibbs sampler algorithm as im-

plemented in the R package spBayes (Finley et al., 2006). Both algorithms are implemented

in C and interfaced to R. For a spatial dataset with 437 spatial observations that comes with

the spBayes package, we ran 10,000 iterations using each algorithm on a 2.40GHz CPU Linux

machine. The RAMPS algorithm took 9390s and the Gibbs sampler algorithm took 6228s.

We discarded 1000 burn-in iterations from each run. The efficiency comparison results are

summarized in Table 2, including ARL (loss of information due to autocorrelation), ESS

(effective sample size), and ESS/s (ESS per second). ARL is an estimate of the autocor-

relation time τ = 1 + 2
∑

∞

k=1 r(k) (Kass et al., 1998), where r(k) is the autocorrelation at

lag k for the parameter of interest. ESS is the number of points in the chain divided by τ .

Though there are 5 regression coefficients in the model, only the first is reported because

they have the same efficiency. Both algorithms draw the regression coefficients efficiently.

For the other parameters (σ2
z , σ

2
e , φ), the RAMPS algorithm generates samples with much

lower autocorrelation, and, hence, many more effective samples. For example, in the most

difficult case of φ, the Gibbs sampler yields 226.5 effective samples, while the RAMPS algo-

rithm produces 1725.7 effective samples. When time is taken into consideration, the RAMPS

algorithm generates 0.184 effective samples per second, while the Gibbs sampler generates

0.036 effective samples per second. This comparison confirms that the RAMPS algorithm is

a superior candidate for parallelization.

[Table 2 about here.]

4 Parallelizing with PLAPACK

The literature on parallel algorithms for matrix operations is voluminous (see, for example,

Duff and van der Vorst, 1999, for a review). There are two main open-source parallel direct

solvers for dense matrices: ScaLAPACK (Blackford et al., 1997) and PLAPACK (van de

Geijn, 1997). Both packages partition the matrix into submatrices and assign them to a

grid of processors for parallel calculations. In this context, the word ”grid” is used not as
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in general parallel computing for its specific connotation but as in the literature on parallel

linear algebra algorithms – to refer to viewing the processors in a single cluster as being laid

out in rows and columns. An important difference between ScaLAPACK and PLAPACK,

from an application’s point of view, is the strategy used to partition and distribute tasks. For

ScaLAPACK, global matrices are distributed on the processor grid prior to the invocation of

a ScaLAPACK routine. It is the application’s responsibility to perform this data distribution.

For PLAPACK, on the other hand, an application only needs to specify a scheme that defines

a matrix distribution strategy. The real data distribution process is done by the package,

significantly reducing application programming efforts. Although ScaLAPACK does provide

more control and functionality, PLAPACK is used to parallelize the MCMC algorithm in

this research.

5 Performance Study

We conducted a numerical study to gain insights into the timing performance of the parallel

algorithm at various configurations of sample size and number of processors. The quantity of

interest is the speedup of the parallel algorithm. Let T (N) be the time required to complete

a computation task on N processors. The speedup S(N) is the ratio S(N) = T (1)/T (N).

The performance of the parallel algorithm was tested on both a local Beowulf Linux cluster

and a reserved cluster on the TeraGrid (Reed, 2003), an element of the U.S. national cyber-

infrastructure with integrated, persistent computational resources. Because the speedup

results are virtually the same, we only report the results from our local Beowulf cluster since

similar resources may be available at many institutions. Our Beowulf cluster runs RedHat

Linux and has 14 nodes, each with dual 1.4GHz Xeon CPUs and 1GB memory. The entire

cluster was dedicated to our use during the test. Since PLAPACK works best when the

process grid is square, we tested for grid sizes 1, 4, 9, 16, and 25.

The model used in the performance test is the spatiotemporal model (6). The covariate

matrix X has four columns: intercept, longitude, latitude, and time. The true value of β

is (1, 2,−1, 1)>. The spatial correlation function is spherical with φ = 1.5. The temporal

correlation function is AR(1) with ρ = 0.5. The two variance components are σ2
z = 1 and
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σ2
e = 0.25. The sample sizes n considered are 1,000, 2,000, 4,000, 6,000, 8,000, and 10,000.

We could not go beyond 10,000 due to the memory limit of each single node. The number

of spatial points are, respectively, 60, 120, 240, 360, 480, and 600. For all datasets, 20 time

points were used but not all sites were sampled at all times.

[Table 3 about here.]

[Figure 2 about here.]

Table 3 and Figure 2 summarize the speedup obtained for all combinations of the 5

processor grid sizes and 6 sample sizes. It is clear that for smaller sample sizes, the benefit of

a larger processor grid is reduced by inter-process communication overhead. As the sample

size increases, however, the speedup for 25 processors also increases. For a dataset with

10,000 observations, the grid of 25 processors leads to a speedup factor of about 9. In

summary, for larger problems, the parallel algorithm with 16–25 processors offers reasonable

speedup and can go beyond the memory limit of single nodes.

6 Sulfur Dioxide Data Analysis

To illustrate the parallel MCMC algorithm, we analyze the aforementioned sulfur dioxide

data obtained from 870 monitoring sites in the continental US from the year 1998 to the

year 2005. The response variable is the mean of hourly measures of SO2 concentration in

10−3 ppm. Table 1 summarizes the SO2 concentrations for groups of year, latitude, and

longitude. A decreasing trend is observed over the six years, with mean 5.12 in 1998 and

4.01 in 2000. Moving northward, as latitude increases by 3.9 degrees from group to group,

the SO2 concentration starts with mean 2.94 in the band of (25.9, 29.8], increases to 6.02 in

the band of (37.5, 41.4], then decreases to 2.82 in the band of (45.3, 49.2]. Moving eastward,

as longitude increases by about 10 degrees, the mean concentration starts with 2.21 in the

band of (−124,−115], increases to 5.84 in the band of (−86.6,−77.2], and ends with 5.18

in the band of (−77.2,−67.8]. These descriptive statistics suggest the inclusion of a linear

term of time and quadratic terms of latitude and longitude in the spatial trend.
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More insight can be gained by looking at maps of SO2 concentration. Figure 3 presents

a year by year quilt plot (Nychka, 2005) of the mean concentration on the same scale, with

monitoring sites discretized to a 128 × 64 grid. The high concentration values are scattered

in a subregion of states around Ohio and Pennsylvania. This “bump” is consistent with

the descriptive statistics in Table 1. Figure 4 presents an enlargement of this subregion

discretized to a 128 × 64 grid. A similar pattern is observed across all six years. Within

each year, higher values around the border of Ohio and Pennsylvania are mingled with

lower values. These plots suggest that the spatial correlation is weak and that the temporal

correlation is strong. In the analysis, a spherical structure is used for spatial correlation and

an AR(1) structure is used for the temporal correlation.

[Figure 3 about here.]

[Figure 4 about here.]

The priors of the model parameters θ are specified as follows. The priors of the regression

coefficients β are flat non-informative. The priors of the variance parameters (σ2, κ) are

induced by σ2
z ∼ IG(1, 1) and σ2

e ∼ IG(1, 1). The prior of the temporal correlation parameter

ρ is U(0, 1). The prior of the spherical spatial correlation parameter φ is U(0.005, 1). This

implies that the smallest and largest distances at which spatial correlation could conceivably

decay to 0 are 1 mile and 200 miles, with distances computed as great circle distances.

After fitting several candidate regression models, we report the one with a quadratic

term for latitude, a linear term for longitude, and a linear term for year. The latitude and

longitude have been centered by their means. The year is coded such that year 0 means

year 2000. Therefore, the intercept β0 has the interpretation of mean SO2 concentration at

longitude −89.38 and latitude 38.63 in year 2000. The RAMPS algorithm converges quickly.

We ran the MCMC sampler for 1000 iterations and discarded the first 50. The advantage of

the algorithm is clearly seen from the autocorrelation plot of 950 posterior samples presented

in Figure 5. The autocorrelation of φ, κ, ρ, and σ2 drops rapidly. Even in the worst case

of φ, it drops to zero after 10 lags. The autocorrelation for each regression coefficient drops

immediately to zero.
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[Figure 5 about here.]

The summary statistics for the model parameters from 950 posterior samples are re-

ported in Table 4. These results are consistent with the descriptive statistics in Table 1

and Figures 3–4. The estimated spatial correlation drops to zero when two sites are about

7 miles apart. The measurement error accounts for about 10% of the total variation. It

is interesting to make inference about the variance parameters on the scale of σ2
z and σ2

e .

The 95% credible intervals for σ2
z and σ2

e are, respectively, (4.370, 5.212) and (0.463, 0.561).

The posterior mean of temporal correlation is 0.95 with a very tight 95% credible interval.

The estimated regression coefficients of latitude and longitude produce a trend surface that

captures the “bump” around Ohio and Pennsylvania. Most interestingly, the linear decrease

of SO2 concentration over the years is highly significant. On average, there is a reduction of

0.158 (10−3 ppm) each year.

[Table 4 about here.]

We ran the analysis using the TeraGrid with different numbers of processors. The

TeraGrid cluster we used consists of 262 nodes, each with dual 1.5 GHz Intel Itanium 2

processors, for a peak performance of 3.1 teraflops. Each node is equipped with 4GB of

physical memory. The cluster runs SuSE Linux and employs Myricom’s Myrinet cluster

interconnect network. For 1000 iterations, it took 19.5 hours for 9 processors, 16.2 hours

for 16 processors, and 14.5 hours for 25 processors. These timing results are to be expected

given the performance summary in Table 3, which provides a rough guideline for choosing

the number of processors given a problem size.

7 Discussion

This article has discussed an efficient MCMC algorithm named RAMPS for Bayesian spa-

tiotemporal geostatistical modeling. Chains generated with this algorithm converge rapidly.

When the marginalized posterior density only involves one or two variables, the algorithm

is very efficient if we use an adaptive rejection or adaptive rejection Metropolis sampling

(ARMS) algorithm (Gilks et al., 1995) in place of the slice sampling algorithm. Even in
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examples with 3 marginalized variables, similar to our analysis with the S02 data, conver-

gence is usually obtained within the first 50 iterations. As a result, the autocorrelations in

the posterior samples are much lower in Figure 5 compared to other algorithms (for exam-

ple, Whiley and Wilson, 2004, Figure 3). The cost of the algorithm is that, when drawing

(φ, ρ, κ) with slice sampling, the joint posterior marginal density p(φ, ρ, κ|Y ) must be eval-

uated repeatedly. For example, in the SO2 example, the average number of evaluations per

iteration is 9.887 based on 1,000 iterations. The efficiency of the RAMPS algorithm may

be improved if we adaptively choose the size of the initial hyperrectangle used by the slice

sampling procedure. This is an important topic for future work.

For large datasets, the evaluation of p(φ, ρ, κ|Y ) is computationally very expensive, if

feasible at all. The approach of this article is to parallelize it with the Parallel Linear

Algebra Package PLAPACK (van de Geijn, 1997). The data distribution strategy used

in PLAPACK made it an attractive option since we were concerned with the provision of

interfaces between applications and libraries. Since users do not need to attend to data

distribution details, programming efforts are significantly reduced. From our performance

study, this approach has reasonable scalability as shown in Figure 2, which makes it a good

choice for spatiotemporal geostatistical modeling of the large datasets frequently encountered

in environmental research.
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Figure 1: Sulfur dioxide monitoring sites.
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Figure 2: Speedup comparison for the spatiotemporal model as sample size increases from
1000 (1k) to 10,000 (10k).
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Figure 3: Quilt plot of SO2 concentration (10−3 ppm) over years in the US.

18



Year  1998 Year  1999

Year  2000 Year  2001

Year  2002 Year  2003

Year  2004 Year  2005

2 4 6 8 10 12 14

Figure 4: Quilt plot of SO2 concentration (10−3 ppm) over years in a subregion in north-
central U.S.
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Figure 5: Autocorrelation plot from 950 posterior samples: (a) φ; (b) ρ; (c) κ; (d) σ2; (e)
intercept β0; (f) coefficient of latitude β1; (g) coefficient of latitude squared β2; (h) coefficient
of longitude β3; and (i) coefficient of year β4.
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Table 1: Summary statistics of SO2 concentration (10−3ppm) for years 1998–2005 and groups
of latitude and longitude. Nobs is the number of observations.

Nobs Mean SD

Years
1998 667 5.12 3.03
1999 643 5.06 2.90
2000 606 4.80 2.96
2001 596 4.50 2.91
2002 578 4.09 2.58
2003 561 4.12 2.60
2004 542 3.97 2.52
2005 518 4.01 2.56

Grouping of Latitude
(25.9, 29.8] 233 2.94 1.52
(29.8, 33.6] 521 2.91 1.66
(33.6, 37.5] 805 3.39 2.20
(37.5, 41.4] 1836 6.02 3.03
(41.4, 45.3] 955 4.35 2.37
(45.3, 49.2] 361 2.82 1.69

Grouping of longitude
(−124,−115] 426 2.21 1.28
(−115,−105] 329 3.30 2.36
(−105,−95.9] 347 2.38 1.75
(−95.9,−86.5] 1218 4.01 2.17
(−86.5,−77.1] 1570 5.84 3.17
(−77.1,−67.8] 821 5.18 2.34

Table 2: Efficiency comparison of the RAMPS algorithm and the Gibbs sampler for a sample
dataset of 437 spatial observations. ARL is the loss of information due to autocorrelation
measured by the expected lag at which autocorrelation drops to zero. ESS is the effetive
sample size. ESS/s is ESS per second. Both algorithms were run with 10,000 iterations on
a 2.40GHz CPU Linux machine with the first 1,000 discarded. The RAMPS algorithm took
9390s and the Gibbs sampler took 6228s.

Parameter Gibbs Sampler RAMPS Algorithm ESS/s Ratio

ARL ESS ESS/s ARL ESS ESS/s RAMPS/Gibbs

β0 1.00 9000.0 1.445 1.00 9000.0 0.958 0.663
σ2

z 37.28 241.4 0.039 1.30 6913.9 0.736 18.872
σ2

e 23.27 386.8 0.062 1.74 5172.1 0.551 8.887
φ 39.74 226.5 0.036 5.22 1725.7 0.184 5.111
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Table 3: Speedup comparison for the spatiotemporal model as samples sizes increases.

Number of Sample Size

CPUs 1000 2000 4000 6000 8000 10000
1 1.00 1.00 1.00 1.00 1.00 1.00
4 1.70 2.01 2.33 2.46 2.58 2.64
9 2.40 3.18 4.16 4.59 4.94 5.40

16 2.00 3.75 5.09 5.90 6.53 7.21
25 1.94 3.54 5.68 7.03 8.36 9.17

Table 4: Summary statistics of the model parameters from 950 posterior samples.

Parameter Mean SD Percentiles

2.5% 50% 97.5%

φ 0.141 0.018 0.109 0.139 0.179
ρ 0.950 0.004 0.940 0.950 0.956
κ 0.097 0.006 0.085 0.096 0.109
σ2 5.288 0.216 4.877 5.277 5.722
β0 4.799 0.111 4.587 4.795 5.023
β1 0.032 0.018 −0.003 0.032 0.067
β2 −0.021 0.003 −0.027 −0.021 −0.016
β3 0.065 0.006 0.052 0.065 0.078
β4 −0.158 0.013 −0.184 −0.158 −0.134
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